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Abstract

We consider a nonlinear parabolic system in mathematical biology that describes the
aggregation of slime molds. An important property of solutions to the system is the
conservation of the L1 norm. Applying upwind technique and time increment control, we
propose a finite-difference scheme satisfying the conservation of the discrete L1 norm.

1 Introduction

In 1970, F. F. Keller and L. A. Segel ([5]) proposed the system of partial differential equations
that described the aggregation of slime molds resulting from their chemotactic features. The
system is now called the Keller-Segel system modelling chemotaxis, and a large number of
works are devoted to mathematical analysis to the system (cf: [2], [3], [10] and [12]). In this
paper, we consider a variant of the system in one dimensional spatial domain (cf: [6]):

{
ut = [Duux − (φ(v))xu]x , (x, t) ∈ Q ≡ (0, 1)× (0,∞)

γvt = Dvvxx + g(u, v), (x, t) ∈ Q
(1)

with the boundary and initial conditions:
{

[Duux − (φ(v))xu]|x=0,1 = 0, u|t=0 = u0(x),
vx|x=0,1 = 0, v|t=0 = v0(x).

(2)

Here, we have used the following symbols.

• u = u(x, t) is the density of the cellular slime molds and v = v(x, t) the concentration
of the chemical substance.

• φ(v) is a nondecreasing smooth function defined on v > 0 and is called chemotactical
sensitivity function. Typical examples are φ(v) = λv and φ(v) = λ log v with λ > 0.

• g(u, v) = α1u−α2v denotes the generation rates, where α1 and α2 are positive constants.

• Du and Dv are diffusion coefficients, and γ is the relaxation time. They are assumed
to be positive constants.
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• Smooth functions u0(x) and v0(x) are initial values. We assume that u0(x) ≥ 0, 6≡ 0
and v0(x) > 0.

The boundary condition for u in (2) is equivalently written as

ux|x=0,1 = 0

because of vx|x=0,1 = 0. However, we prefer the expression (2), since it is convenient when we
consider an approximation of the boundary condition. By KS, we mean the initial-boundary
value problem composed of (1) and (2).

It is known (cf: [1], [10], [12] and [13]) that KS admits a unique classical solution (u, v)
globally in time. On the other hand, we obtain readily that

u(x, t) > 0, (x, t) ∈ Q ≡ [0, 1]× [0,∞) (conservation of positivity); (3)
∫ 1

0
u(x, t) dx =

∫ 1

0
u0(x) dx, t ∈ [0,∞) (conservation of total mass). (4)

As a result, the L1 norm of u is preserved:

‖u(t)‖L1(0,1) = ‖u0‖L1(0,1), t ∈ [0,∞). (5)

This is actually a salient property; the steady-state problem corresponding to KS is reduced
to a nonlocal eigenvalue problem by (5).

The purpose of this paper is to propose a finite-difference scheme that preserves the
discrete analogues of (3), (4) and, consequently, (5). In a previous paper [9], we considered
a reduced system of KS (γ = 0 and φ(v) = v) and realize such conservative finite-difference
schemes. There, we applied upwind technique to the spatial discretization and semi θ schemes
with the time increment control to the time discretization. We extend our strategy to KS in
this paper. Convergence analysis, which is not addressed in this paper, is another important
subject. We are concerned with convergence analysis in the literature of the finite-element
method in other papers ([7], [8]).

We describe our finite-difference scheme in Section 2 and then study the conservation of
the L1 norm in Section 3. Finally, we give a remark on the conservation of positivity in the
finite-difference method for a parabolic equation in Section 4.

2 Finite-difference scheme

Take a positive integer N and put h = 1/N . We introduce two kinds of grid points over [0, 1]
as:

xi =
(

i− 1
2

)
h (i = 1, . . . , N), x̂i = ih (i = 0, . . . , N).

Grid points over [0,∞) is defined by

tn = τ1 + · · ·+ τn (n = 1, 2, . . .),

where the time increment τn > 0 will be determined later. We consider approximations of
u(x, t) and v(x, t) on (xi, tn) and (x̂i, tn), respectively. Thus, we would like to find

un
i ≈ u(xi, tn) and vn

i ≈ v(x̂i, tn).

Posit that
un = (un

1 , . . . , un
N )T and vn = (vn

0 , . . . , vn
N )T .

For the time being, we suppose that un−1 and vn−1 have been obtained and describe schemes
for solving un and vn separately.
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Scheme for solving vn

We introduce

ûn
i =





un
1 (i = 0)

1
2(un

i+1 + un
i ) (i = 1, . . . , N − 1)

un
N (i = N)

, ûn = (ûn
0 , . . . , ûn

N )T .

Let θ ∈ [0, 1]. Then, vn is computed by the standard θ scheme. That is,

γ
vn
i − vn−1

i

τn
= θDv

vn
i−1 − 2vn

i + vn
i+1

h2

+ (1− θ)Dv

vn−1
i−1 − 2vn−1

i + vn−1
i+1

h2
+ g(ûn−1

i , vn−1
i ) (0 ≤ i ≤ N), (6)

where vn
−1 and vn

N+1 are eliminated by the boundary condition

vn
−1 = vn

1 , vn
N+1 = vn

N−1 (n = 1, · · · , m). (7)

The scheme (6) with (7) is equivalently written as:

(γI + θλnDvL)vn = [γI− (1− θ)λnDvL]vn−1 + τngn−1, (8)

where I is the identity matrix, and

L =




2 −2 0 0
−1 2 −1

· · · · · ·
−1 2 −1

· · · · · ·
0 −2 2




, gn =




g(ûn
0 , vn

0 )
g(ûn

1 , vn
1 )

...

...
g(ûn

N , vn
N )




, λn =
τn

h2
. (9)

Scheme for solving un

The key point is to introduce a reasonable approximation of the flux F = −Duux + (φ(v))xu
of u by applying upwind technique. We set

bn
i =

φ(vn
i )− φ(vn

i−1)
h

(1 ≤ i ≤ N), bn = (bn
1 , . . . , bn

N )T . (10)

Further, we set
bn,+
i = max{0, bn

i } and bn,−
i = max{0,−bn

i }.
Obviously, bn

i is an approximation of (φ(v))x at x = xi. We note that

F = −Duux + [b]+u− [b]−u,

where b = (φ(v))x and [b]± = max{0,±b}. Hence, following a technique of upwind approx-
imation, we may suppose that un

i and un
i+1 are carried into a point x̂i on flows bn−1,+

i and
−bn−1,−

i+1 , respectively. That is, a discrete flux Fn
i of un at x = x̂i is given by

Fn
i = −Du

un
i+1 − un

i

h
+ bn−1,+

i un
i − bn−1,−

i+1 un
i+1 (i = 1, . . . , N − 1).
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Similarly, an discrete flux F̃n
i of un−1 at x = x̂i is given by

F̃n−1
i = −Du

un−1
i+1 − un−1

i

h
+ bn−1,+

i un−1
i − bn−1,−

i+1 un−1
i+1 (i = 1, . . . , N − 1).

By the boundary condition (F |x=0,1 = 0), we set

Fn
0 = 0, Fn

N = 0, F̃n
0 = 0, F̃n

N = 0. (11)

Then our proposed scheme is as follows:

un
i − un−1

i

τn
= −θ

Fn
i − Fn

i−1

h
− (1− θ)

F̃n−1
i − F̃n−1

i−1

h
(i = 1, . . . , N) (12)

with the boundary condition (11).
In order to state the matrix representation, we introduce an N ×N matrix Hn = [Hi,j ]

by

Hi,j =





Du + hbn,+
1 (i = j = 1)

−Du − hbn,−
2 (i = 1, j = 2)

−Du − hbn,+
i−1 (2 ≤ i ≤ N − 1, j = i− 1)

2Du + h[bn,+
k + bn,−

k ] (2 ≤ i ≤ N − 1, j = i)
−Du − hbn,−

k+1 (2 ≤ i ≤ N − 1, j = i + 1)
−Du − hbn,−

N−1 (i = N, j = N − 1)
Du + hbn,+

N (i = j = N)
0 (otherwise).

Then, the scheme (12) with (11) is equivalently written as

Mn−1un = Kn−1un−1, (13)

where
Mn−1 = [Mi,j ] = I + θλnHn−1, Kn−1 = [Ki,j ] = I− (1− θ)λnHn−1.

3 Conservation of the L1 norm

In this section, we describe how to choose the time increment τn such that un generated by
(13) and (8) satisfies

‖un‖1,h = ‖u0‖1,h,

where ‖ · ‖1,h is the discrete L1 norm defined as

‖u‖1,h =
N∑

i=1

|ui|h (u = (u1, . . . , uN )T ∈ RN ).

We still suppose that un−1 and vn−1 have been obtained, unless otherwise stated explicitly.
The following lemma is a direct consequence of the expression (12) and the boundary

condition (11).

Lemma 3.1. Let un be a solution of (13). Then,
N∑

i=1

un
i =

N∑

i=1

un−1
i .

4



We introduce
‖b‖∞ = max

1≤i≤N
|bi| (b = (b1, . . . , bN )T ∈ RN ).

Lemma 3.2. If
2(1− θ)

(
Du + ‖bn−1‖∞

)
τn ≤ h2, (14)

then we have

Ki,i ≥ 0 and Ki,j

{
> 0 (j = i± 1),
= 0 (i 6= j, j 6= i± 1).

(15)

Lemma 3.3. We have

Mi,i > 0 and Mi,j

{
< 0 (j = i± 1),
= 0 (i 6= j, j 6= i± 1).

(16)

In particular, Mn−1 is irreducible.

Proofs of Lemmas 3.2 and 3.3. Since bn−1,±
i ≥ 0, we have Hi,i > 0 and Hi,i±1 < 0. Other

entries of Hn−1 vanish. Hence, (15) and (16) follows. Irreducibility is a consequence of (16).

Lemma 3.4. If
2θ‖bn−1‖∞τn ≤ h, (17)

then Mn−1 is diagonally dominant with strict inequalities holding for i = 1, N .

Proof. By (17), we deduce

N∑

k=1

Mi,k = Mi,i−1 + Mi,i + Mi,i+1 ≥ 1− 2hλnθ‖bn−1‖∞ ≥ 0

for i = 2, . . . , N − 1. Similarly, we have

N∑

k=1

M1,k > 0,
N∑

k=1

MN,k > 0.

Thus, strict inequalities hold for i = 1, N .

For u = (u1, . . . , uN )T ∈ RN , we write u ≥ 0, if and only if ui ≥ 0 for 1 ≤ i ≤ N . The
meaning of u > 0 is similar.

Lemma 3.5. Let un−1 ≥ 0. If

τn ≤ min
{

h2

2(1− θ)(Du + ‖bn−1‖∞)
,

h

2θ‖bn−1‖∞)

}
,

then there exists a solution un of (13) satisfying un > 0.

Proof. By Lemma 3.2, we have w = Kn−1un−1 ≥ 0 and w 6≡ 0. Hence, in view of Lemmas
3.3 and 3.4, we can apply [14, Corollary 3.20] to obtain un > 0 satisfying (13).

The following result is standard.

Lemma 3.6. If vn−1 ≥ 0 and 2Dv(1− θ)λn ≤ γ, then there exists a solution vn > 0 of (8).
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Remark 3.1. If vn > 0, then φ(vn
i ) is well-defined.

Now we can state our numerical algorithm.

Step 0. Take N ∈ N , θ ∈ [0, 1], T > 0, and ε ∈ (0, 1]. Set h = 1/N , n = 1 and t0 = 0. u0

and v0 are defined by u0
i = u0(xi) and v0

i = v(x̂i).

Step 1. Compute bn−1 by (10). Set

τn = min
{

τ,
εh2

2(1− θ)(Du + ‖bn−1‖∞)
,

εh

2θ‖bn−1‖∞

}
(18)

and tn = tn−1 + τn. Here, τ is defined as

τ =





an arbitrary fixed positive constant (θ = 1),
γh2

2Dv(1− θ)
(θ 6= 1).

Step 2. Find un and vn by solving (13) and (8), respectively.

Step 3. If tn ≥ T , then finish the computation. Otherwise, renew n by n + 1 and return to
Step 1.

Summarizing lemmas mentioned above, we establish the following.

Theorem 3.1. Let {un,vn} be the solution generated by the algorithm mentioned above.
Suppose that u0 ≥ 0 and v0 > 0. Then, we have un > 0 and vn > 0 for n ≥ 1. Moreover,
un satisfies

‖un‖1,h = ‖u0‖1,h (19)

for n ≥ 1.

Remark 3.2. We have a priori estimate

‖un‖∞ ≤
N∑

i=1

un
i =

1
h

N∑

i=1

un
i h =

1
h

N∑

i=1

u0(xi)h

by (19). Hence, we obtain C = C(h, u0) > 0 such that τn ≥ min{τ, C} which implies that τn

never converge to zero as n increases. Thus, our algorithm always works.

4 A remark on the conservation of positivity

In this section, we briefly mention an issue on the conservation of positivity in the finite-
difference method for a parabolic equation. Thus, we consider a linear convection-diffusion
equation for the function u = u(x, t) defined on Q:

ut = [ux − b(x, t)u]x (20)

where b(x, t) ≥ 0 denotes a given flow. We assume that u(·, t) and b(·, t) are periodic in [0, 1].
The standard explicit finite-difference approximation to (20) is

un+1
i − un

i

τ
=

un
i−1 − 2un

i + un
i+1

h2
− bn

i+1u
n
i+1 − bn

i−1ui−1

2h
(21)
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for 1 ≤ i ≤ N and n ≥ 0, where un
i ≈ u(ih, nτ), bn

i = b(ih, nτ), h = 1/N and τ > 0. As
readily see, if

τ ≤ 1
2
h2, h ≤ 1

2βn

(
βn = max

x∈[0,1]
b(x, nτ)

)
, (22)

then we have
un

i ≥ 0 (1 ≤ i ≤ N) ⇒ un+1
i ≥ 0 (1 ≤ i ≤ N). (23)

If we apply this method of approximation to KS, b(x, t) corresponds to (φ(v))x. However,
since we do not know a priori bound for (φ(v))x, we cannot guarantee that (22) holds. On
the other hand, a simple upwind finite-difference approximation to (20) is

un+1
i − un

i

τ
=

un
i−1 − 2un

i + un
i+1

h2
− bn

i un
i − bn

i−1ui−1

h

for 1 ≤ i ≤ N and n ≥ 0. In this scheme, (23) is satisfied, if

τ ≤ h2

2 + hβn
. (24)

Therefore, in order to guarantee (23), we take a variable time increment τn subject to (24)
instead of the fixed time increment τ . This is a reason why we have employed upwind method
and time increment control to our finite-difference scheme.
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