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Abstract

The regularity of a solution to the variational inequality for the Stokes
equation is considered. The inequality describes the steady motion of the
viscous incompressible fluid under a certain unilateral constrain of friction
type. Firstly the solution is approximated by solutions to a regularized problem
which is introduced by Yosida's regularization for a multi-valued operator.
Then we establish a regularity result to the regularized problem. The regularity
of the solution to the original inequality follows by the limiting argument.

1 Introduction

The present paper is concerned with the regularity of a solution to the following
problem: Find v € K!(Q) and p € L*(0) satisfying

a(u,v — u) — (p,div (v — u))
+i() —i(w) 2 (fiv—u), (Ve K'(DQ). (L1)

Here and hereafter the following notation is employed: Q is a bounded domain in
R™, m = 2 or 3. The boundary 9 is composed of two connected components I'y
and I'. For the sake of simplicity, we assume that Iy and I of class C? and that
ToNT = 0. The additional smoothness assumption on I will be specified later. We
introduce

KY(Q)={ve H' ()™ |v=0o0n Iy},
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then K!(f2) denotes the solenoidal subspace of K!(f). (-,-) denotes the inner prod-
uct in L2(2) or L?(N)™ according as scalar-valued functions or vector-valued func-
tions. We set

1 Ou; Ou;
a(u,v) = / eij(u)ei;(v) dz, eij(u) = 2=+ -~
2 QIS;J‘S”‘ axj 62.‘
for u = (u3,--- ,um) and v = (v}, -+ ,vy,). Finally
jv) = / g|v| ds, (ds = the surface element of T'), (1.2)
r

where g is a given scalar function defined on I,

As was described in Fujita and Kawarada [7], the variational inequality (1.1)
arises in the study of the steady motions of the viscous incompressible fluid under
the frictional boundary condition, where u denotes the flow velocity, p the pressure
and f the external forces acting on the fluid, and g is called the modulus function of
friction. We now review the boundary condition of this type. Let o(u, p) be the stress
vector to I'. That is, we let o(u,p) = S(u,p)n, where S(u,p) = [-pdi; + e; ;(u)]
stands for the stress tensor and n the unit outer normal to I'. Then we pose on
o(u,p) that

lo(u,p)| < g (1.3)
and
lo(u,p)l <g = u=0,
u=0o0ru#0, (14)

lo(u,p)l =g = u#0=>o(u,p) = —gu/|u|

almost everywhere on I'. The classical form of the frictional boundary value problem
for the Stokes equations dealt with in (7] consists of

-Au+Vp=finf, divu=0inQ, u=00onTp (1.5)
together with (1.3) and (1.4). The inequality (1.1) is a weak form of this problem.

Re/mark 1.1. To be more precise, j should be understood as the functional on
HY2(T)™;

i) = /r dulds, (ne HVAT™.

However, for the sake of simplicity, we will regard j as the functional on H(f)
through

itole) = [ lvlel ds
and write it as (1.2).
The existence theorem was established in [7] Assume that

fel* )™, geL=), g > Oa.e. . (1.6)
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Then (1.1) admits of a solution {u,p}. The velocity part u is unique, and the
uniqueness of the pressure part p depends on cases. We shall give an example about
this issue in §5.

Henceforth we write || - ||, || - |s and || - ||s,r instead of || - [|z2(q), || - || 4+(q) and
I - zre(ry, respectively. The trace yv on T of v € H!(R) is denoted by v|r, where
7 stands for the trace operator from H(f) into H'/?(T). The meaning of v|r,
and v|gq is similar. For vector-valued functions, as long as there is no possibility of
confusion, we shall use the same symbols. C denotes various generic constant. If it
depends on parameters ¢;,- - ,qp which may not be numbers, we shall indicate it
by C = C(q," -+ ,qm). Furthermore 8| - | denotes the subdifferential of the function
l2| = (2 +--- + 27,)!/2.

The main purpose of this paper is to prove the following regularity result.

Theorem 1.1. Let T be of class C3. Assume that (1.6) and moreover that g €
HY(T). Let {u,p} be a solution of (1.1). In particular, p is any corresponding
pressure of u. Then u € H2(Q)™ end p € H'(R) with

llullz + liplls < CUIfII+ llgllsr),
where C = C(§2). Moreover we have o(u,p) € H'/?>(T)™ and
—o(u,p) € g0lu| a.e. T

In order to prove Theorem 1.1, we follow the method of Brézis [2]. Namely, we
approximate a solution {u, p} of the ineguality (1.1) by solutions {u., p. } of equations
which are obtained by replacing j by a regular functional j. in (1.1). Then the
regularity of {u.,p.} is studied. Actually, for € > 0, we introduce

je(v) = /P gpew) ds, (v HY(@)™),

where
_[rl-e2 (ol > e,
pelv) = {lvP/(ze) (ol < ¢).

Then an approximate problem for (1.1) we shall consider is: Find ue € K!(Q) and
Pe € L%(Q) satisfying
a(ue,v — u.) — (pe,div (v — u,))
+Je(v) = je(ue) 2 (fiv—ue), (Yve K'(R). (L.7)
Concerning the approximate problem, we have the following three theorems.

Theorem 1.2. Assume that (1.6) and let € > 0. Then (1.7) admits a unique
solution {uc,pc} with

Nuells + lipell < CUAN + llgllz2ry)s
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where C = C(RY). Furthermore, {u,p.} is a weak solution of (1.5) together with
—0(ue,pe) = gac(ue) a.e. I. (In particular o(u.,p.) € L*(T)™), (1.8)

where we have put

alv) = {v/IvI (Il > )

vfe  (lvl <e).

Remark 1.2. In Theorem 1.2, o(u,p) is understood as a functional on H'/?(I")™
defined by

(o,n) = a(ue,¥y) — (e, div ¥p) — (f,¥y), (VnE€ Hllz(r)m)s
where 9, € K'(f) is any extension of 7.

Remark 1.3. Our choice of the regularized functional is based on Yosida’s regular-
ization. Namely, Yosida's regularization of 8| - | coincides with a; = Vp,.

Theorem 1.3. Assume that (1.6) and lete > 0. Let {u,p} and {u.,p.} be solutions
of (1.1) and (1.7), respectively. Then we have:

llue = ullx + I — £l < C(Q,9)VE, (1.9)

where p=p — |0~ (p, 1), Pe = Pe — |9~ (pe, 1) and |Q| indicates the measure of Q
in R™

Theorem 1.4. Let T be of class C? and let € > 0. Assume that (1.6) and moreover
that g € HY(I'). Let {uc,p:} be a solution of (1.7). Then u. € H?*(N)™ and

pe € HY() with
llzellz + llpell: < CULAN + llglla.r)- (1.10)
It should be kept in mind that C = C(Q2) does not depend on €.

Now we can state:

Proof of Theorem 1.1. Let € > 0, and let {u,,p.} be a solution of (1.7). By virtue of
Theorem 1.4, sequences ||u,||> and ||pc||: are bounded as € | 0, respectively. Hence,
there are subsequences {u,} and {p} such that

uer — u* weakly in H2(Q)™, pe — p* weakly in H'(Q)

and
flullz + llp*ll < CUIFN + lglla,r)-

According to Theorem 1.3, {u*,p*} is a solution of (1.1). Next let {u,p} be any
solution of (1.1). By the uniqueness of the velocity part, we have u = u*. On the
other hand, p—p* = k and a constant k is restricted via (1.3). Therefore p € H(f),
and we deduce

o(u,p) —o(u,p*) =kn a.e. I.
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This, together with (1.3), implies that |k| < 2g holds almost everywhere on I'. Hence
|k| < 2|T|~!/2||gllL2(ry, where |T'| denotes the measure of ' in R™~1. By making use
of this estimate, we have

lfullz +lplls - < lullz + llp*ls + [£lV/]9
< CUAN+ Nglls,r),

which completes the proof. O

The rest of the present paper is composed of the following sections:

§2. Proof of Theorem 1.2
§3. Proof of Theorem 1.3
84. Proof of Theorem 1.4
85. Remarks

Acknowledgment. The authors wish to express their gratitude to Professor Haim
Brézis for his valuable suggestions.

2 Proof of Theorem 1.2

As a preliminary to prove Theorem 1.2, we describe a decomposition theorem con-
cerning K(2) which is essentially due to Solonnikov and Séadilov [14]).

Through Riesz’s representation theorem, we define an operator B from L?(f) to
K'(Q) by

(Bg,v)mr gy = (g, div v), (Vg€ L*(); Wv € K(N)). (2.1)

Lemma 2.1. The range R(B) of B forms a closed subspace of K'(2). Moreover
we have the orthogonal decomposition

K'(Q) = R(B) ® K(Q).

Proof. By taking v = Bg in (2.1), we have ||Bg||; < ||g|l; Thus, the linear operator
B is bounded. On the other hand, as will be verified later, for any ¢ € L%(Q2), we
can take 9 € K*(Q) satisfying

divi=¢qin, 9|l <C|gll

Substituting v = ¥ into (2.1), we obtain ||g]] < C’||Bq||;, which means that the
inverse operator B~! is also bounded. Consequently, we have

Cligll < lIBall: < C'llgll (Vg € L3(Q)). (2.2)

Therefore the closedness of R(B) follows. To prove R(B)* = K1(f) is an easy task,
where R(B)* denotes the orthogonal complement of R(B) in K1(f2). It remains to
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verify the existence of # appeared above. We take w € HZ(f) subject to Aw = p in
Q and introduce ¢ € H/2(8Q)™ by

¢= Vw only
")  onT,

where a constant X is chosen as A = ||~} (Vw, n) 2(r,). Then, since (¢,7).2(aq) = 0,

there is a g € HI(Q)"‘ such that div vp = 0 in  and |lvol)y < ClI¢|l1/2,60 < Cllpll
The desired function is # = Vw — vp.

Proof of Theorem 1.2. Since j. is a convex, lower semi-continuous proper func-
tional, from standard theory of convex analysis (for example, Glowinski [8]), the
minimization problem: Find u € K}(f) satisfying

T = f  J(0), Ji(0) = 500,0) = () + o)

has a unique solution u which is characterized by
a(u,v = u) + je(v) = je(u) > (fv—u), (Vv e K (Q)). (23)
Following Solonnikov and S¢adilov [14], we shall prove that a scalar function p

can be taken as {u, p} solves (1.7). Substituting into (2.3) v = u = t¢ with arbitrary
# € K1(9), t > 0 and letting ¢t — 0, we obtain

a(u, @) + -/I" gae(u) - ds = (f,9), (Vo€ K1(Q)).
We introduce a linear functional in K!(2) by setting
F) = afw ) + [ gocw)- ¥ ds = (£9) (V% € K'(@))

Then by making use of Lemma 2.1 and Riesz’s representation theorem, we can easily
show that there exists a p € L%(f) satisfying

F@) = (p,dive) (V9 € K @),
This yields
a(u, %) — (p,div ) + fr W) -pds=(f,¥) (WeK'(Q). (24)

The uniqueness of p is obvious on account of (2.2). Thanks to the convexity of je,

/ryae(v) - (w—v) ds < je(w) — je(v), (Vv,w € H'(Q)™).
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By using this, we can easy verify that {u,p} solves (1.7). On the other hand, (2.4)
leads to

(o, ) + ]P goc(u)-wds=0 (Vne H/XT)™),

where ¢ € K'(Q) is any extension of 7. Consequently, it follows from ga.(u) €
L% (T)™ that o(u,p) € L*()™ and

-o(u,p) = gae(v) a.e T,
which completes the proof. 0O

Remark 2.1. The bilinear form a is continuous in H 1(f2); There is a constant
do > 0 depending only on § such that

a(u,v) < dollullillvll,  (Vu,v € HY(Q)™).

Moreover, a is coercive in K!(Q). In fact, Korn’s inequality (e.g., for example,
Duvaut and Lions [5]) implies that

a(v,v) 2 aillvll} (Vv € K'(Q))

with a domain constant §; > 0.

3 Proof of Theorem 1.3

The derivation of
e —uclhh < C(Q,9)Ve (3.1)

is same as the proof of Theorem 10.4 in Kikuchi and Oden [9]. In particular, we can
take a constant as C(R,g) = (|T] - |lgl|L(r)/61)*/2. We proceed to the estimate of
the pressure part; Namely, we shall prove

B ~ Bl < C'(2, 9)Ve. 32)
Putting ¢. = p. — p, we have
a(u - ue, ¢) = (¢, div @) (Vo € H()™). (3.3)

In view of Babusca-Aziz’s lemma ([1]), we can take w, € H} ()™ subject to div we =
ge in © and |jwell; < C"(9)]lgel]. Now substituting ¢ = w, into (3.3), we deduce

llgell? = a(u — e, we) < dollu — uellillwells < GoC” (Wl - wellllgell-

Combining this with (3.1), we get (3.2) and therefore (1.9). O
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4 Proof of Theorem 1.4

We firstly review the well-known regularity result for the Stokes equations under the
Neumann boundary condition.

Lemma 4.1. Let f € L*()™ and w € HY/2(I')™. Suppose that {u,p} € H'(Q)™ x
L*(Q) is a weak solution of (1.5) with o(u,p) = w onT'. (See Remark 1.2). Then
u € H2(Q)™ and p € H(N) with

lullz + liplls < CUIAN + llewlly/2,p)-

Lemma 4.1 in the case of w = 0 was described in Solonnikov [13] with a mention
on Solonnikov and Séadilov [14] concerning the method of the proof. However it
seems that the complete proof for the case of w # 0 is not explicitly stated in these
papers; In this connection, we refer to a forthcoming paper Saito [11].

Lemma 4.2. Let {u,p} be a solution of (1.7), and put we = gae(u:). Then we have
we € HY2(T')™. Thus, from Lemma 4.1, u € H2(Q)™ and p. € H'(R).

Proof. Firstly we verify that ae(u.) € HY/2(T')™ with
llce (ue)llas2,r < Cle, D)lluelrllya,r- (4.1)

This is essentially due to Brézis [2], where he dealt with the scalar case, and it is
possible to extend his result into our vector-values case. In fact, we can prove that

1° a. is a bounded operator in H*(T")™.
2° Jlae(@)ll,r < e71CM)|wll,r, (Y € HI(T)™).
3° Jlae(w) — ee(@)llL2ry= < €71C(D)llw — @l pagrym, (Yo, & € LA(T)™).

The assertions 2° and 3° are easy consequences of a property of Yosida's regular-
ization. As a result, we can apply a nonlinear interpolation theorem by J.L. Lions
(Theorem 3.1, [10]) and obtain that a. is an operator on H?(T)™ with

lloe@)llo.r < €7 CD)llwllo,r, (Yo € HY(T)™)
where 0 < @ < 1. Taking 8 = 1/2, we have
lee @llyjz,r € e 'C@Nwllajar, (Yw € HY2T)™),

which implies (4.1).
Next let us denote by § € H!(2) the weak harmonic extension of g € H/2(T"):

AG=0inQ, g=0only, gG=gonl.

It follows from the maximum principle that ||§llL=(q) < llgllz=(r). On the other
hand, we take the weak harmonic extension & € H'(R) of a.(v). That is, we
extend each component of a.(v) into Q by the harmonic function. By the definition
of a. and again the maximum principle, we have ||@|lL=(2) < llae(V)l|lL=r) < m.
Since §a. € H'(Q)™, the trace ga.(v) € H/2(T)™. O
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In order to derive the estimate (1.10) which is independent of €, we need another
device.

Lemma 4.3. Under the same assumptions of Theorem 1.4,

Bells/2.,r < CEO@UIFN + llglhs,r), (4.2)
where f = u|p.
At this stage, we can state

Proof of Theorem 1.4. Let € > 0. Lemma 4.3 implies that a solution {u,,p.} of
(1.7) satisfies the usual Dirichlet boundary value problem composed of (1.5) and

u.=f onT.
Therefore, by virtue of Cattabriga’s regularity result ([3]), we have

luellz + Ipell < CEOUIFN + 1Bellasz.r)-
By taking account of (4.2), we finally have (1.10). O
It remains to prove Lemma 4.3.

Proof of Lemma 4.3. Let g € . Then there exist a neighborhood U C RY* of z
and a one-to-one mapping & = (®;,---,®,,) from U onto U C R} enjoying the
following properties (See, for example, §I-2 in Wolka [15]):

1° & is a C3-diffeomorphism;

2° P(z9) =0;

¥ eUNY=Qr={y=(,ym) ER™ ! xR; |t'| <R, 0 < ym < R};
4 eUND)=v={y=ynm) ER™ ! xR; |¢/| <R, ym =0};

5° %im = —nj on UNT, where n = (ny,--- ,ny,).
3

Setting y = ®(z) = (®1(z) -+ , Pmm(z)) and introducing

v(y) =ul(x), q(y) =p(z)

and :
fy) = f(z), 3@ =g(z), &(v(y)) = a(u(z)),
we havefor j=1,--- ,m
6‘1’;; 6q = B .
- 15;15171 By et Z Bz; Byx B Qs (4.3)

G; (v.q) = —ga;(v)  on7r (4.9)
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and
?;‘i =0in Qr. (4.5)
1<kigm 9%t Ok
Here
6<I>k 8‘1’( 31),, 6‘1’1; 3‘1’!
Bjna= b"'a Z z, dyx’ Z 9z, 9z,
Fj=f;j- Zd Z, aj(v,q)-q——ZE,.,.
v=1 v=1

and d; denotes a bounded function in Qr depending on ¢, V@ and V2®. In fact,
(4.3) follows from

=~ 0 op
=Y aeia(u) + 5 = fj,
&~ 9z Oz;
which is an equivalent expression to —Au; + dp/8z; = f; under div u = 0. On the
other hand, div u = 0 and (1.8) imply (4.5) and (4.4), respectively.
Let ¢; be a function such that ¢;(y',ym) = 0 for |y'| > R or for ym > R.

Multiplying by ¢; both sides of (4.3) and integrating over @ r, we have by integration
by parts

Bq)k /' . , /'
E; B / Q)i dy' + | Fjpj.
kz,:/@n "“ By; Z ayk Oz ; (p’) a G(v,a)p; dy o iPi

Hence, writing ¢ = (11, ,¥m), We obtain
v qu v Oy
Zf e 7 * (5 7<) (5 7<2%)]
0 -
-y / 15, (tsz‘I’k) = / a(v,q)p dy' + / Fop. (4.6)
® JQr OUk R Qr
Now we choose ¢; as
o _mz-:l d ( 26v,)
¥3 o Oy \ Oy

where € C*°(R7") stands for a cut-off function subject to

0<7<1inR}, n=1inQpp, n=0for|y’|>Rorym>R.
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If we write (4.6) as I — I, = I3 + I, then we deduce

hL2e Z Z "”ay.ayk "

i=1 k=1

4.7
= &|lvll1,@n ; kz:l ”"ay i " esllvllf g "
\12| < eallalion (llvlh.on + Z Z 755 ayk 1) (4.8)
1 < ol ol (49)
and et m
I < eolflln + Ivllign) (el on + )Y |75 ayk —) @

Here we check only (4.9). Other inequalities are verified by Saito [12]. Firstly, we
note that
Vea(s)t-t>0 Vs, teR™.

Hence
b= =3[ {rl@am 24 (Law) -7 2}
* =1 'm ’ 9y Ui 7 Oy y
m-—1 ~
< 3ol I5l,, < totmtvstan.

Taking into account of (4.7)-(4.10), we have

m—-1 m

PR e ay | < colivll.cn +lallan + Nl rm + 1Fllgn):

i=1 k=1
m
(Ivlle.cn + Z M . ayk —|)-

=1 k=1
This yields
m-1 m 62'0 .
> Y |50 < colivllson + lallon + ldlh v + i lan):
e T

and therefore v

z [52],. . < ciolivlan + lallan + Il rm + 1 llan)
yl vQR
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with R' = R/2. According to this inequality, introducing

v

=== =1, ,m—1
Ki ayj ‘Ya" (.7 ) )

we arrive at

Iills2vme < er1(lvlli,@n + lallQn + lhae + IfllQs), (=1, m—1).

This means that all tangential derivatives of v|,,, belongs to H 1/2(4p). Therefore,
vl"!gl € H3,2(7R')m and

ohy lls/2.re < €r2(llvllngn + llallr + 1ll1.ve + I fllon)

Summing up the above estimates, we finally have

1Bellssa,r < crallullie + llplle + lgllr + I flla)-
Therefore we have established the desired (4.2). O

Remark 4.1. As is described in [12], the inequality (4.7) is a consequence of Korn’s
inequality, and (4.8) is that of (4.5). Furthermore, the constant c; depends on the
third derivatives of ® so that we need to assume that T is of class C3.

5 Remarks

(A) Non-uniqueness of the pressure part. In general, a corresponding pres-
sure p of the velocity u which is a solution of (1.5)(1.3)(1.4) is not unique. We give
a simple example. For the time being, we employ the polar coordinates z = (r,0) in
R2. We assume that

Q={(r,0;1<r<Vv2}, To={r=1}, T'={r=v2},

and set e, = (cosf,sind), eg = (—sin8,cos8). Put u(r,d) = w(r)eg and p(r) = &r,
where w(r) = 2/r —r and & > 0 is a constant. We notice that {u,p} solves

-AMu+Vp=cxe,, divu=0inQ, ulr, =es, ulr=0. (5.1)

Moreover the stress vector is written as o(u,p) = —p(r)er + W(r)eg, where W(r) =
—4w(r)/r?. Hence |o(u,p)] = V2% + 4.

Firstly we define ¢ = v2x2+4+1. Then |o(u,p)| < g and u|r = 0 hold.
Therefore {u,p} is a solution of (5.1)(1.3)(1.4).

Next put p. = p + ¢ with a constant ¢, and let co < ¢1 be roots of the equation
2v/2kc + ¢ = 1. Then the following facts are hold true: (i) if co < ¢ < ¢; then
{,pc} is also a solution of (5.1)(1.3)(1.4). (ii) if ¢ < co or ¢1 < c then {u,p.} is not
a solution. Namely, in this case, p is not unique and the non-uniqueness is restricted
through (1.3).

On the other hand, if non-trivial movement (u # 0) takes place on a portion
I'; C T, then p is uniquely determined.
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(B) Other flow problems. From the view point of physics, some modifications
of (1.1) are much more interesting. Actually, H. Fujita [6] studied the Navier-Stokes
or the Stokes equations under the leak or slip boundary conditions of friction type.
The similar results about the regularities of solutions for these problems could be
obtained by the same method presented in this paper. See, for more detail, Saito
[12].

(C) Problems in elasticity theory. Our method is applicable for some problems
in elasticity theory. For instance, we can give another proof of a regularity theorem
described in M. Cocu and A.R. Radoslovescu [4], where they dealt with Signorini
problem with non-local friction.
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