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Abstract — A certain domain decomposition iterative algorithm for the Stokes equations is considered. The
aim of the present paper is to study relationships between the convergence speed of iteration and the shapes of
subdomains. Our consideration is restricted to the continuous problem and to the case in which the whole domain
is divided into two non-overlapping subdomains. Then, introducing a certain geometric condition, we can derive
explicit decay rates of the error on an artificial boundary. Also, a new important role of the so-called inf-sup
constant is revealed. The proof is accomplished by means of an operator theory.
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The present paper is concerned with some analytical foundations of the domain decomposition
method (DDM). In particular our attention is focused on the domain-dependence of the conver-
gence speed of some domain decomposition iterative scheme. This means that we shall make
an analytical study on sensitive relations between the rate of convergence of iterations and the
shape of decomposed domains. The problem of this sort was firstly considered by H. Fujita in
1995. Specifically, under some geometric conditions between subdomains, for example Con-
dition (I) described in Section 2, he succeeded in deriving explicit decay rates of the error and
obtaining some information on the optimal choice of relaxation parameter ([6, 71). Several
generalizations of Fujita’s results and numerical experiments by the finite difference method
are presented in Fujita-Katsurada-Kobari-Nagasaka (81, Fujita-Saito [10] and Fujita-Fukuhara-
Saito [9]. These papers dealt only with the Poisson equation. This paper is sequel of these
works and devoted to the similar problem for the Stokes equations. Namely, the purpose of the
present paper is to study the domain-dependence of the convergence speed of some DDM for
the Stokes equations.

We emphasize that this paper deal with the problem in continuous variables and does not
consider the particular discrete problem. We believe that this enable us to find the analytical
essence of our problem which does not depend on the particular discretization manner.

With a view to clarifying the nature of our results and the argument of our method, we
restrict our consideration to a simple situation. Namely, we divide the whole domain into only
two disjoint subdomains and deal only with a certain typical iterative scheme. Actually, we can
prove that the convergence speed of such iteration depends upon the following:

(i) the relative relationship between subdomains described in terms of the reflection of sub-
domains with respect to an artificial boundary. These relationship is introduced as Con-
dition (I);
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(ii) the characteristic quantity on the shape of the domain, say, the inf-sup constant of each
subdomain.

In other words, we derive explicit decay rates of the error on an artificial boundary with the aid
of Condition (I) and the inf-sup constants of two subdomains. Consequently, moreover, we can
also get a concrete information on the choice of the relaxation parameter.

Our method of analysis is an extension of Fujita’s one. Thus, it is based on (1) the theory
of self-adjoint operators and their fractional powers applied to the Steklov-Poicaré operator for
the Stokes equations and (2) the variational principle for the Stokes and the Laplace equations.
However, it should be also noted that the description of our theorem does not involve any
operator-theoretical concepts at all. Furthermore, apart from a treatment of our problem by
operator theory, an investigation of the Stokes flow in symmetric domains plays a key role.
There a new important role of the so-called inf-sup constant is revealed.

The results of this paper were already announced with a sketch of the proof in Saito [23];
the complete proof is provided in the present paper.

This paper is composed of seven sections. In Section 1, we formulate our problem. Specifi-
cally, we introduce the target problem, the way of dividing of the whole domain and the iterative
scheme to be considered (the Dirichlet-Neumann (DN) iterations). Our main results are stated
in Section 2, after having introduced some symbols and our shape condition, Condition (I).
Section 3 presents some preliminary considerations concerning (1) function spaces, (2) trace
theorems in domains with corners, and (3) solutions of the homogeneous Stokes equations. In
Section 4, the proof of our theorem is established. We shall conclude the present paper with
several additional remarks including a numerical example given in Section 5.

Remarks on the notaion. (1) Concerning function spaces and their norms, we follow the
notation of Lions-Magenes [17]. We use the same symbols to denote a scalar-valued function
space and a vector-valued one, whenever there is no possibility of confusion.

(2) By 7o we denote the trace operator from H'(Q2) to H'/?(y) and the boundary value y,v of
v € H'(Q) will be written conveniently as v|,. The meaning of v|r;, i = 1,2, is similar.

(3) The precise definition of symbols in this paper will appear in Section 3.

1. FORMULATION OF THE PROBLEM

1.1. Target problem

Let  C R? be a bounded domain with a piecewise smooth boundary I'. Then our target
problem is the following boundary value problem for the Stokes equations:

—Au+Vp=f in Q
divu=0 in Q (1.1
u=b onT.
As usual, the vector function u denotes the flow velocity, the scalar function p the pressure.
The prescribed vector function f defined in 2 and b on I" are the external forces acting on the
fluid and the boundary value, respectively. Throughout this paper, we assume that f € L?(Q)
and b € H'/?(T'). We assume in addition that the flux condition:

/b-ndI‘:O (1.2)
r

ie
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is satisfied. Here n stands for the unit outer normal to I'. By i we denote the exact solution of
(1.1) and by $ an accompanying pressure of the velocity @. Under assumptions above, unique
existence of & € H'(f) is guaranteed on account of the standard theory of variational method.
Besides it is well-known that § € L?(Q) is uniquely determined up to an additive constant.

1.2. Decomposition of target domain

We decompose €2 into two disjoint subdomains Q; and £, by a smooth simple curve ;
0=0,00,U7, MUWnQH=0.

We assume that 5 connects transversally two pointson I'. Put ' = 00, \y and T, = 8%\7.

The unit outward normal to the boundary of a domain in consideration is denoted by n. If

necessary, by v we denote the one to -y outgoing from Q. The curve v is called the artificial
boundary. See, for example, Fig. 1.

I

- L

Figure 1. Decomposition of the target domain.

1.3. Iteration to be considered
Together with the above decomposition, we consider the following iterative scheme.

The Dirichlet-Neumann (DN) iterations. Let 6 be the relaxation parameter such that
0 < 0 < 1. Take a vector-valued function u® on 7 satisfying

]u(o)-ud7+/b-ndf‘=0. (1.3)
7 ™

Then we successively generate {uY‘), pgk)}, {ugk), pgk) } and {u**V}, k =0, 1,2, ..., through

AP +vpP =f  in @
div ugk) =0 in &,

14
’ng) =b on I‘l ( )
ol = pu®  on v
—au +vpy) = f in
div ug‘) =0 in Q
u¥) = on Iy (1.5)
(k) 3,“(")
gD = (1 - 6)u® + 0U§k)|~/- (1.6)

Several remarks are in order.
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Remark 1.1. In the above (1.5), we have used the notation as

aug")
v

where [Vugk)] stands for the tensor-valued function of a vector-valued function ul ) Specifi-
cally, the first term of the right-hand side of (1.7) means the product of a tensor and a vector,
and the second term the product of a scalar and a vector. As concerns the boundary condition
of this type, the further remark will be mentioned in Section 5.

Remark 1.2. In view of (1.2) and the continuity condition in €, it is easy to verify that

-y = (Vully — p{Fly %)

/u(")-ud'y+/b-nd1‘=0, k=0,1,2,....
r

7
That is, the flux condition in €, is satisfied for each iteration.

Remark 1.3. Letan arbitrary k > 0 be fixed. An accompanying pressure p ) of the velocity
u{® is uniquely determined up to an additive constant c(") Hence, we can determine c(*) by
standard techniques, for example, take c(*) such that fn D )d:z: = 0, or such that p{*) = 0 at

some point in £;. Then the accompanying pressure p, ) of u2 is uniquely determined. This

means that p(") depends on the choice of p(k).

Remark 1.4. Marini-Quarteroni [18] considered the discrete version of the DN iterations
above by the finite element method and succeeded in deriving the following results: there exist
two constants 0 < 6y < 6; < 1 such that, if 6y < 8 < 6,, it holds that

IV (@ — u*Dllza@y < ROHIV(ER - vy, *k=1,2,3,...

for some suitable constants 0 < R(f) < 1. Moreover 6y, 6, and R(6) are independent of the
mesh parameter h. Here, for instance, i, is a finite element counterpart of 4. Their results
only assert the existence of 6, 6, and R(6). However, as mentioned in Introduction, we are
interested in concrete relationships between convergence rates of the DN iterations and the way
of decomposition. In other words, for the continuous problem, we are going to derive explicit
values of convergence factor (convergence speed) and admissible bounds of the relaxation pa-
rameter 6.

Remark 1.5. As is well-known, under some suitable regularity assumptions, the problem
(1.1) is equivalent to the muluti-domain problem:

-Auy+Vpr=f in —Aus+Vp,=f in Oy
divu; =0 in divus =0 1in o
uyy=b onl,, ups=b on Iy

with the interface conditions

Uy = U2 on 7y
6u1 6

—_—— =-= on
ey nv on + pan i

Moreover this muluti-domain problem is reduced to the interface equation:

Su=x, p=il (1.8)
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where ¥ denotes an operator acting on functions on <, and x a function defined on 7. Actually,
the DN iterations is regarded as a Richardson-type iteration on (1.8) using a certain precondi-
tioner. On the other hand, there are several strategies to precondition X, and they correspond
with domain decomposition iterative schemes. Our description here is somewhat formal; We
can obtain more detailed and precise discussions about such aspects of the domain decomposi-
tion methods in the monograph [22] by A. Quarteroni and A. Valli.

2. MAIN RESULTS

In this section, our main results are stated. To this end, we need some symbols. We confine our
attention to the error £*) on  which is defined by

£ = F(k) = iy

Denote V' a vector-valued function space V = {¢ € H?(v); [|€]ly < oo} with

élly = { |I£||1;'1"/’('10 + "p_l/zfni’(v) }1/2

where p is the distance from the end points of y. On the other hand, it is well-known that there
exists a positive constant satisfying

inf (qa div 'U)i

sup ————— =f; 1=1,2.
9€LG(%) veH)(R;) llall; 1Vli; Y ,

Here we have employed the following notation:

o (u,v); = ausual L*(£};) inner product, and |ul|; = (u, u)}/z;

o [Vo]Z= Y [|0v™/0zall} for v=(v',v%) € H'(%);

o L}(%) = {q € L*(%); (q,1); =0}.

The constant 5; is called the inf-sup constant corresponding to €2; and introduced independently
by Babugka [2] and Brezzi [5]). When (; is a square, we have

Bl < (4+2V2)Y/? =26131.... @.1)

This can be derived by combining the result in Horgan-Payne [15] with that in Velte [26]. The
additional information on the inf-sup constant will be given in Section 5.
At this stage, we introduce our shape condition which is firstly considered by Fujita [6].

Condition (I). Let v be a line segment on the z;-axis and let 2 be the image of €2; by
reflection with respect to the zz-axis. Then, (€2, ) is said to satisfy Condition (I) if an inclusion
Q) C Q, holds. See, for instance, Fig. 2.

Now we can state our main theorem.

Theorem 2.1. Put o = 1 + (1 + 87')% B = max(By, B2) and, for 0 < 6 < 2/a, define

i(a):{l—e for 0<8<2/(a+1)

2.2)
ab—1 for 2/(a+1)<0<2/a.
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Suppose that (R0, 7) satisfies Condition (I). Then there exists a positive constant ¢y depending
only on (S, ) such that

I€®lly < @@y, k=1,23,.. @3)

holds true.

Figure 2. Example of geometry satisfying Condition (I).

Remark 2.1. Under the same assumptions of Theorem 2.1, taking 6 = 6, = 2/(a + 1), we
get the minimum Fmin = (@ — 1)/(a+ 1) of #(6). In other words, the value which brings about
the fastest decay speed is smaller than or equals to 7iin. That is, we could say that 8 = 6, is the
optimal choice of § among all values of # which yield the exponential decay of the error and is
universally optimal for any (R, ) as long as Condition (1) is satisfied.

These theorems, together with (2.1), imply the following corollary.

Corollary 2.1. Suppose that (2,) satisfies Condition (I) and moreover that both , and
Q, are squares. Then, as long as 0 < 0 < 0.1423, the exponential decay of the error as stated
in (2.3) is guaranteed. Furthermore, in this case, we get Tmin < 0.8671.

3. PRELIMINARIES

This section presents preliminary considerations which we need to prove our theorem. In Sub-
section 3.1, we collect function spaces. Subsection 3.2 is devoted to auxiliary lemmas concern-
ing the trace theorem. In Subsection 3.3, we are concemed with solutions of the homogeneous
Stokes equations. In order to discuss in a general context, for the time being, we assume that

[ is an arbitrary bounded domain in R?;

a smooth curve 7 is a part of 02;

I' = 80\ is a piecewise smooth curve;

{ n is outward normal on 7; (€N))
~ connects [ at two points;

intersections of  and T' are corner points of

| which are not turning points.

3.1. Function spaces
Below we collect function spaces we will use. Although a few of them are already appeared,

for the convenience of later reference, we again state their definitions.

(i) X = avector-valued L?(v). (£,7)x and ||¢||x denote L?(v) inner product and norm,
respectively;
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(ii) X, = {£ € X; (€,n)x = 0} whichis our basic Hilbert space;

(iii) Vo = {£ € C5°(7); (&:n)x =0}
(iv) V = {€ € H/?(v); ||éllv < oo} with the norm

_ 1/2
el = {1ENragy + ™€ }

where p stands for the distance from the end points of . It is well-known that V' is a
Hilbert space equipped with a norm [|€|lv;

) V, = VN X, which is a closed subspace of V;
i) L3(Q) = {q € L*(Q); (¢, )2 =O0};
(vii) H}(Q) = {v € H'(Q); vlon = 0};
(viil) H3,(9) = {v € H)(Q); dive =0in Q};
(ix) K'(©) = {ve H'(Q); vlr =0}
® K1(Q) = {ve K'(Q); divo=0in0}.

3.2. Trace theorem and Stokes extension

We introduce a continuous bilinear form on K (£2)

a(u,v) = ag(u,v) = / VuVvdz= 3 / Oui O 4, (32)
1]

1<i,4<2 0z; aT'J

It is evident that a is K (2)-¢elliptic, i.e., there exists a positive constant C depending only on
Q such that

a(u,u) > Cllulling Vue K'Y(Q). (3.3)

Remark 3.1. In what follows, the symbol C denotes a positive constant which depends

only on Q. The value of C' may change even in the same context. The meaning of the symbol
C' is same.

Below, we will deal with the following boundary value problem:

Aw—-Vp=0 in
divw=0 in Q
w=0 onT

w=¢§ on 7.

(34

We make the meanings of the problem (3.4) and its solution more precise. We begin by the
following lemma concerning the trace on 7y of a function in H* ().

Lemma 3.1. The following two assertions hold true.
(i) Forevery ¢ € K'(R2), we have n = |, € V and |Inllv < Cll¢llm@)-

(ii) For everyn €V, there exists a ¥y € K'(Q) such that Y|y =nand ||[Y||m@) < Clinllv.
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Remark 3.2. For the proof of Lemma 3.1, we refer to Grisvard [13]. Assume that v is a
line segment, and suppose that L is a minus Laplacian on 7y with a zero Dirichlet boundary con-
dition. Then, as a matter of fact, V is coincident algebraically and topologically with D(L/4)
which denotes the domain of a 1/4-power of L (Fujiwara [11]). According to this, we can give
an elementary proof of Lemma 3.1 by using the eigenvalues and the eigenfunctions of L (see
Saito-Fujita [25]).

The solenoidal (div v = 0) version of the above lemma holds also. That is, we have the
following statement.

Lemma 3.2. The following two assertions hold true.

(i) Foreveryv € K (), we have £ = v|, € V, and |||l < C|lv||m(q)-
(i) Forevery £ € Vs, there exists av € K}(R) such that v|, = £ and ||v|| gy () < C'[|€]lv.

Proof. (i) This is immediately obtained by virtue of Lemma 3.1 (i) and the Gauss divergence
theorem
0=/divvda:= /u-ndr=/§-nd7.
) an v

(ii) We employ a standard argument (see, for example, in Arnold-Scott-Vogelius [1]). Let
£ € V,, and suppose that ¢ € K'() is an extension of £ as in Lemma 3.1 (ii). We introduce a
scalar function F' € L%(f) by setting F' = —div 4. Then we have F' € L2((Q) since

n/Fdz:—ﬂ/divq/;dx:—:/{-nd'y=O.

Therefore, by virtue of the Babuska-Aziz lemma (Lemma 5.4.2, [3]), there exists a vector
function ¢ € Hy(Q) such that div¢ = F in Q and ||V{]|z2q) < C||F||2q). Then, we put
v = 9 + ¢ which is the desired function. o

Remark 3.3. When (2 is a polygon, a generalization of Lemma 3.2 is presented in Arnold-
Scott-Vogelius [1].

At this stage, we can describe the definition of the Stokes extension which is already intro-
duced in the finite dimensional case in Marini-Quarteroni [18] and Quarteroni [19]. According
to Lemma 3.2, for any £ € V,, the set

Ko (@) = {v € K;(Q); vly = ¢} (3.5)

is not empty. Therefore, by virtue of the standard theory of variational methods, for any £ € V,,

the problem (3.4) admits of a solution {w,p}. More precise, there exist w € K1(f2) and
p € L*(Q) satisfying

a(w, ) — (p,div @) 3y =0 Vo e Hy(Q), wl,=¢. (3.6)

As is well-known, w is unique and p is uniquely determined up to an additive constant. We call

w the Stokes extension of € into 2 and p an accompanying pressure of w.
The following lemma is an easy consequence of Lemma 3.2 and (3.6).

Lemma 3.3. The inequality
CIIEII < a(w,w) < C'liElly €X)
holds for any £ € V,. Here w is the Stokes extension of € into Q). Namely, the norm
a(w, w)'/? is equivalent to ||€||v in V.
Remark 3.4. An extensive analysis concerning the Stokes extension and the harmonic
extension described below are presented in Quarteroni-Valli [22].
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3.3. Symmetry of domains and the Stokes flows

This subsection is devoted to a study on properties of the Stokes extensions. Let £ € V. Then
the solution g € K'(Q2) of the harmonic problem:

Ag=0inQ, g=0onT, g=§onvy 3.8)

is the harmonic extension of £ into 2.

Lemma 3.4. Let £ € V,, and suppose that w € K (Q) and g € K 1(Q) are the Stokes
extension and the harmonic extension of € into ), respectively. Moreover let B be the inf-sup
constant corresponding to Q). Then we have

a(g,9) < a(w,w) < (1+57")%al(g,9). (3.9

Proof. The first inequality is deduced from the variational principle for the harmonic func-
tion;

a(g, g) = min{a(v,v); v € K'(@),u=¢ on 7}. (3.10)

The second inequality is essentially obtained in Marini-Quarteroni [18]. For the completeness

of the argument, however, we state its proof. For the sake of simplicity, we write (+,*) =

()3 and <=l llz3@) Letp € L%(Q) be the accompanying pressure of w. Then it
holds from the definition of 3 that
(p, divv) (Vw, Vv)
Bllpll € sup === sup —=—— < |[Vu.
- e - A I A

As a result, we deduce
a(w, w) = a(w,w — g) +a(w, g) = (p,div (w — g)) +a(w, 9)
1
< lpll 1Vl + [Vl | Vgll < (1 + E)IIVwIHIVgll .

Hence we arrive at )
Vel < (1+5)1vall-

This completes the proof. 0

Now we can prove the following lemma which plays a key role in the proof of our
theorem.

Lemma 3.5. Assume that both 0, and Q, are two bounded domains and share a part «y of
their boundaries. Moreover, assume that -y is a line segment on the Tz-axis and that Q, and

Qg are reflection of each other with respect to . Put p = pr = pa, ai(,-) = an,(+,) and
az(-’ -) = an, (‘, '). Then it holds that

(14 B7) 2ag(wa, wa) < ar(wy, w1) < (1+ B~1)ay(wa, wa) @3.11)
for any £ € V,, where wy € K (1) and w, € K;(S2) are the Stokes extensions of € into 4y

and Qy, respectively.

Proof. Let g, € K'(€) and g, € K*(£,) be the harmonic extensions of £ into Q, and
€),, respectively. It is clear that g, (z:, T2) = g2(—11,22) and therefore a; (g1, 1) = az(g2, 92).
This equality, together with Lemma 3.4, implies (3.11). O
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4. PROOF OF THEOREM

This section establishes the proof of Theorem 2.1. To this end, we adopt Fujita’s method [6, 7]
with necessary modifications to fit the present problem. In fact, the proof will be accomplished
along the following scheme: (1) derivation of a recursive expression of the error in terms of
the amplification operator (Subsection 4.3); (2) introduction of the special inner product in the
function space under consideration to treat the amplification operator as a self-adjoint operator
(Subsection 4.2); (3) estimation of the spectrum radius of the amplification operator under our
shape condition (Subsection 4.3 and 4.4). At the stages (1), (2), we use the so-called Steklov-
Poincaré operator for the Stokes equations, which is defined in Subsection 4.1. That is, the
amplification operator and the special inner product are defined in terms of the square root of
the Steklov-Poincaré operator.

Notation concerning operator theory. For an operator T', we write D(T') and R(T) to
indicate the domain and the range of T, respectively. Let X and ) be two Hilbert spaces.
By £(%,92) we denote the space of all linear continuous operators from X into 2), with the

Operalornom]
I Tully
T||=||T =su .
“ ” ” “c(xhx2) uGIIJ "u”z

In addition, we write as £(%) = £(%, X).

4.1. Steklov-Poincaré operator

In this subsection, we are going to define the Steklov-Poincaré operator for the Stokes equa-
tions through the theory of unbounded quadratic form in a Hilbert space by Kato [16], which
we call Kato’s theory.

We assume that (3.1) holds. For the time being, we present formal discussions. We as-
sume that, for & € V;, a smooth vector function w and a smooth scalar function p solve the
homogeneous Stokes equations (3.4). Then an operator Sy is defined by

= (2~

We would like to deal with Sy as an operator of X, — X,. This is possible by controlling
an additive constant of an accompanying pressure p of w. In fact, let py € L2(f) be the
accompanying pressure of w and put p = pg + & with a constant k. Then we have

Ow
(Sofm)x = 1/ (5= —pon) - ndy = x|
where || is the measure of «. Therefore, if we take

K= |_'IYI/ (% —pon) -ndy 4.1)
7

we ensure that Spé € X,.

Actually, the operator Sy is a primitive version of the Steklov-Poincaré operator that we
want to define. In general, unfortunately, even if £ is taken from Vj, its Stokes extension w
and the accompanying pressure p do not have regularities that justify our consideration above.
This is the reason that we employ Kato’s theory, which needs no regularity assumptions on w
butw € H'(R).

v
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Now we proceed to a rigorous definition. Let us introduce a quasilinear form J in X, by

{ the domain D(J) of J is V,
J[€,7I1=‘1(W,”) VfaUED(J)

where w and v are the Stokes extensions of £ and 7 into 2, respectively. We shall not distin-
guish J from the corresponding quadratic form J[§] = J[€,£]. Obviously, J is positive and
symmetric. Moreover, we deduce the following lemma.

Lemma 4.1. J is a closed form in Kato's sense. Namely,
f,.GD(J), én = & in X, J[En_fm]"‘)o: n,m— 00 4.2)
implies that
&LeDWJ), Jtn—& —0, n—ooo. “4.3)
Proof. Assume that (4.2) holds . Then it holds from (3.7) that {£,} is a Cauchy sequence
in V4. Since V, is complete, there exists a £ € V, = D(J) such that

Jé— &l =0, n—oo.

By the uniqueness of the limit, &5 = & so that (4.3) follows. O
Lemma 4.2 (the Steklov-Poincaré operator). There exists an operator S : D(S) C X, —
X, associated with J such that
(i) S is positive and self-adjoint in X,. S'/? is also self-adjoint in X,;
(i) D(S) CD(J) =V, and Jl,n] = (S€,m)x VE €D(S),Vn € V,;
(iii) D(SY2) =V, and JlE,n] = (S'2€,5n)x V&€ Vi
(iv) S'% € £(V,,X,) and S7'/? € £(X,,V,).

The operator S is uniquely determined by the condition (ii).

Proof. Applying J to the representation theorems (Chapter VI-§2, Kato [16]), we immedi-
ately obtain (i)-(iii). Since it holds from (3.7) and (iii) that

Clellv < 15%¢)lx < C'llEllv, E€Vs (4.4)

we have S'/2 € £(V,, X,). This implies that 8(S'/?) is closed, and therefore, by virtue of the
density of R(S'/?) in X, we have R(S'/?) = X,,. It is also derived from (4.4) that S/ is
bijective. Hence we deduce (iv). o

The operator S will be called the Steklov-Poincaré operator for the Stokes equations (or
simply the SPS operator) pertaining to (€2, ). We shall often write S = S(, ) to express this
correspondence.

Remark 4.1. If £ and its Stokes extension w have suitable regularities, in view of Lem-
ma 4.2, we obtain

(S§,&)x = a(w,w) = / (Z—: — pn)édy
v
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where the accompanying pressure p has been chosen subject to (4.1). This equality means that
ow
se= (3, =),

holds in the distribution sense.

Remark 4.2. The concrete characterization of D(S) is an open problem.

The operator S/2 can be characterized by the variational principle. In fact, for any £ € V,
the variational principle for the Stokes equation claims that

a(w,w) < a(v,v) Vv E K (D)

where w is the Stokes extension of £. This, together with Lemma 4.2 (iii), implies

IS*2%€]1% < alv,v) Vv € Ke(Q).

4.2. New inner product in V,
We consider the case where

4, £, are arbitrary bounded domains and
share the interface boundary y and 'y = 8 \1y, T2 = 002, \y.-

And write
SI=S(QI:7) and SZ=S(9217)

We here investigate the operator Sy 15, which plays an important role in the argument
below.

Lemma 4.3. The operator Hy = S5 18, admits of a bounded extension in V. Moreover its
extension is given by

H=8;"*ss7' 1y 81" 4.5)
where (-)* means the adjoint operator in X,.

Proof. It is easy to verify that Ho = HE for £ € D(Hy) = D(51)- On the other hand, the
boundness of H follows from

S e oX, V), (S5 e £(Xa), 8 € £V Xo).
In fact, since it is clear that S}/ Sy 2 ¢ g(X,), its adjoint operator (S:/ 25y Y %)+ is also
bounded in X, . a

The crucial point of our method is to introduce a special inner product in V; in terms of the
square root of the SPS operators as follows:

(& n) = (53%,5 )x  VEmeV,. 4.6)

Then it follows from the linearity of s,‘/ 2 that V,, again forms a Hilbert space with the
new inner product (4.6). Moreover, in view of (3.7), we deduce that the corresponding norm

Il = (& €))'/* is equivalent to [[€]|v in V.

Lemma 4.4. Under the new inner product (4.6), the operator H defined by (4.5) is self-
adjoint in V,.

Itd
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Proof. Since H is bounded in V,, it suffices to verify that H is symmetric. This is seen
from
(Hen) = (817877517 83 m)x = (51, 51 *n)x
(&Hn) = (75" ;‘/’)*s:’” )x = (517,51 n)x

which completes the proof. m]

H is not self-adjoint with the usual X, inner product. Thus, introducing the new inner
product (4.6) allows us to treat H as a self-adjoint operator.

4.3. Amplification operator for the error

We return to the DN iterations. We keep the notation of Section 1. Let us introduce error
functions as follows:

~ k ~
{ o =u® — o, ¢ =p® —pla,
v = ul —ilg,, ¢ =p¥ —plg,

These functions solve
: A v =0  in@,

div v(k) =0 in
vgk) =0 onI}

v =€® oy

A — Vgl =0 inQ,
div v(k) =0 in £,
) vgk) =0 onTly
of g _ ool ) oy
\ 311 T@Rn= 31/ ony

€4+ = (1 - )€™ + 601,
Therefore £*+1) can be expressed, at least in the formal manner, as
€W = (1-0)e® - 05;'516®.
In view of Lemmas 4.3 and 4.4, we can replace S;'S; by H. Thus, by putting
Ag=(1-60I-0H 4.7

we arrive at a recursive expression of £*) of the form

€0 eV,
{ k) = Ape®) £ =0,1,2,.... @9

This means that the error on «y is successively generated in accordance with (4.8). We will call
Ag the amplification operator for the error or the error-generating operator.
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Since H is bounded, self-adjoint in V,, with the special inner product (4.6), A4 has the same
properties too. By r,(Ag) we denote the spectral radius of Ag. Then, on account of (4.8), we

have
eV = r, (Aa)IEB, &k=0,1,2,... (4.9)

where |||€]|| = ((&,€))"/? and we have used the fact that Ay is self-adjoint with (4.6).
Moreover, we have the following lemma.

Lemma 4.5. Let o(H) be the spectrum of H. Then we have

74(Ap) = A:u&) |1 —6—6). (4.10)

Proof. This is a direct consequence of the spectral mapping theorem (see, for example,
Yosida [27]). Namely, noting that Ag = 1 — @ — §H, we deduce

To(As) = sup [(|= sup [1—0—0A|
¢ea(Ag) A€o (H)

where o(Ay) stands for the spectrum of Ay. O

4.4. Spectrum of H and proof of theorems

By virtue of the argument in the previous subsection, if we obtain a concrete information on
the spectrum of H, we can calculate the right-hand side of (4.10). Thus we have an estima-
tion of the spectral radius of Ay. Applying those estimation in conjunction with the equality
(4.9), we obtain an estimation of ) in the ||| - |||-norm. We recall that Marini-Quarteroni [18]

essentially proved that
Ci<A<L(C, VAGU(H)

where C; is a positive constant depending on ;. Therefore, the estimation of r,(A4) in terms
of C; and C, can be obtained. However, we want to know more explicit values of C, and C,.
This is possible with the aid of Condition (I). Thus, we can prove the following lemma.

Lemma 4.6. Suppose that (2, y) satisfies Condition (I) and put § = max(B, B2). Here
and B, are the inf-sup constants corresponding to ) and Qy, respectively. Then we have

0<ALS(1+8)  Vieo(H).
Proof. Let £ € V, be fixed. Suppose that €} is the reflection of 2, with respect to v and

wj € K;(€) be the Stokes extension of £ into Q5. Put a, = ag,, a2 = ag, and a = ag;. By
the assumption, 2, C ©,; holds. We introduce the zero extension v of wj into ;;

V= ’ll); in Qg
- 0 in Ql\Qz .

By virtue of the variational principle for the Stokes equations, we have
a1 (w1, wy) < a)(v,v) = ag(wy, wy) .
Hence, from Lemma 3.5, we deduce

a1(wi, w1) < (1 + B;")%az(we, ) . (4.11)
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On the other hand, let g;, g2 and g; be the harmonic extensions of £ into £;, ) and Q,
respectively. Then, in view of the variational principle for the harmonic function, it holds

that
a1(g1, 91) < ay(95, 95) = a2(92, 92) -

Therefore, again from Lemma 3.5, we deduce

a1 (wi, wi) < (14 A7) 01(91,91) < (1 + BV aa(92, 92) < (1+ B77)az(ws, wo) - (4.12)
This inequality, together with (4.11), implies

a1(wr, w1) < (14 B7")2a1(wa, wo) . 4.13)
Now note that
(HE ) = IS €l = ar(wr,w), ENP = 1557€ll% = az(w, ws).
Thus, (4.13) can be written as
(HE &) < (1+ BN

which completes the proof. O
We are now in a position to prove Theorem 2.1. Put @ = 1+ (1 + 87')%. According to
Lemma 4.5, we have
Te(Ag) < sup |1 — 60— M| =max{|1-6|,|1-ab}.
0<A<a—1
The right-hand side of this inequality is nothing but () which is appeared in Theorem 2.1.
This completes the proof.

5. CONCLUDING REMARKS

5.1. The discrete DN iterations

As mentioned in introduction, we restrict our consideration to the problem of continuous vari-
ables. However, from the practical point of view, we are interested in the corresponding dis-
crete problem. Let us consider a discrete version of each subproblem in the DN iterations by
the finite element method. Namely, we consider the discrete DN iterations which is studied in
Marini-Quaeteroni [18]. Unfortunately, the theory developed in this paper can not be expected
to be valid for the discrete DN iterations. In fact, Lemma 3.5 which plays a key role in our
analysis is not true, if we consider the discrete problem, since the triangulations of subdomains
are in general non-symmetric. Accordingly, if we want to obtain the similar results for the
discrete DN iterations, we need to assume that the triangulations of 2, and §2, are symmetric
with respect to the line segment «. This is a quite strong restriction from the practical point of
view. Therefore we have to make a new device to treat the discrete DN iterations, which will
be discussed in another paper.

We present a numerical example to illustrate our theoretical results. To this end, we assume
that:

M ={-a<12,<0,0<z3<a}, p={0<2z1<aq, 0<z3<a}.

Then v = {z; = 0, 0 < zo < a}. Moreover, as concerns the triangulations of Q, and Q,,
we take the one illustrated in Fig. 3. The reason that such triangulations are chosen is already
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described above. We note that in this case all assumptions of Corollary 2.1 are satisfied. Our
test problem is the following. The external force and the boundary condition are taken as
f = (0, f2) and b = (0, 0), respectively, where

f2 = 80a’zy + 4825 4 9600’z 7, — 960az3z; — 7200’z 25 + 9602322 — 480az, 23 + 240z, 75 .
Then the exact solution of the target problem is given by

Q= 20(a — 11)%(a + z1)%z2(a — z2)(a — 2z3)
- —40z, (a — z1)(a + z1)73(a — z2)?
p = —120a%z, + 80a%z} — 240z} + 1600’71z, — 80a’z}z,
+4823z; + 240d°z, 73 — 240az3z} — 160a’T) 73 + 16027 .

Here we have chosen 7 subject to $(0, 0) = 0. The initial guess is taken as

4 = sin (27"@)(1, 1).

We observe the discrete maximum error:

B(k) = max|py® — 3| + max [y ® — 7]

where uﬁk) = (p,l,’(k), ui’(k)) is the finite element approximation for i = @}, = (i, i) with a
mesh parameter b > 0. We use the P2/P1 elements.

We chose a = 0.5. Convergence histories of log E'(k) are illustrated for several values of §
in Fig. 4, where the line 7, means the convergence history when the convergence factor is equal
to 0.86. Figure 4 shows that the claim of Corollary 2.1 is true. Furthermore, we also observe
the exponential decay of the error even if  is greater than 0.142. This result does not contradict
Corollary 2.1, since the corollary claims that if 0 < 6 < 0.142 then the exponential decay of
the error occurs.

Since, as described above, we do not analyze the discrete DN iterations directly, the above
experiment is no more than an example.

Figure 3. Triangulation of ; (shaded part) and 3 (adjacent one).
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Figure 4. Convergence histories of log E(k) for several values of § with a = 0.5.

5.2. The inf-sup constant

We show that the convergence factor of the error on -y depends explicitly on the inf-sup constant
under Condition (I). As a result, to evaluate the value of the inf-sup constant is of important.
Let Q be a bounded domain in R?, and let 8 be the inf-sup constant corresponding to 2. We
assume that Q is simply connected. Then the equality 8~ = \/m holds (Velte [26]), where
k denotes the second Korn’s constant (see, for definition, Horgan-Payne [15]). This relation is
useful to evaluate the value of 8. That is, as concerns the value of k, we know:

(i) k > 4 for any bounded domain §2 (Horgan [14]), x = 4 holds when Q is a disk ([15]).

(ii) When Q is a regular n-side polygon, we have k < 2/(1 —sin(w/n)) ([15]). In particular,
if Q2 is a square, we have k < 8 + 4V/2.

5.3. Alternative choice of the artificial boundary condition

In order to fix the idea, we consider the situation given by (3.1) and suppose that {w =
(w', w?),p} is a solution of the homogeneous Stokes equations (3.4). Then, the function

[ ]=3_w_ =[]
an’p—an pn_ azJ pn

has no obvious physical meaning. There, of course, as long as we regard w and p as elements in
H'(Q) and L%(€2), respectively, 7,[w, p] is understood as a functional over V' which is defined
by
(T,n) = a(w,¥) — (pdivy)rzy VneV
where 1 € K'(f2) is an extension of 7 into . As a matter of fact, the boundary condition
Ta[w, p] = g on 1, g being a prescribed function, is the natural boundary condition correspond-
ing to the Dirichlet form a(u,v) in the H'-theory. From the view point of hydrodynamics,
however, we might have to use the deformation integral form
1 . u™  Ouf

E(u,v) = 5([ Y emj(u)emi(v)dz  with emj(u) = 9%, Bom

1<mj<2



54 N. Sdito

instead of a(u, v) as the H!-ellipticity form. Then, the corresponding natural boundary condi-

tion becomes

On[w,p] = [~POm; + emj(w)]-n=g on 7.
Actually, [—pémj + em,j(w)] means the stress tensor and 0,[w, p] the normal stress on 7. If
we re-formulate our problem and some devices used in this paper with E(u,v) and o,[w, p],
our results remain true. However, the numerical treatment of o, [w, p] is more complicated than
that of 7,,[w, p]. This is the reason that we employ 7, [w, p| as the artificial boundary value in
the present paper.

5.4. Resolvent Stokes equation
It is worth while to consider a resolvent Stokes problem:

Ku—€eAu+Vp=f in
divu=0 in (CR))
u=b onT

in which k > 0 and £ > 0 are prescribed constants. If k = 0, then (5.1) is the usual stationary
Stokes problem. On the other hand, if > 0, then (5.1) follows from the time discretization of
a time-dependent Stokes problem. As concerns the problem of this type, we can obtain similar
results (Saito [24]).
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